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Abstract

Background: Patients with generalized anxiety disorder (GAD) usually present with various neurological symptoms,
but the mechanisms remain unclear. We aimed to analyze the characteristics of dynamic cerebral autoregulation
(dCA) in patients with GAD.

Methods: Patients (aged ≥18 years) who were diagnosed with GAD were enrolled in this study. Medically and
psychiatrically healthy volunteers were recruited as controls. Subjects received the Hamilton Rating Scale for Anxiety
(HAMA) and 17-item Hamilton Depression Rating Scale (HAMD) evaluation. Noninvasive continuous arterial blood
pressure and bilateral middle cerebral artery blood flow velocity were recorded simultaneously from each subject.
Transfer function analysis was used to derive the autoregulatory parameters, including phase difference, gain, and
coherence function.

Results: A total of 57 patients with GAD and 40 healthy volunteers were enrolled. We found that the phase
difference values were significantly compromised in patients with GAD. In the Spearman correlation analysis, the
phase difference values were negatively correlated with the HAMA scores and the HAMD scores. In the multiple
linear regression analysis, GAD is negatively correlated with the phase difference values, whereas age is positively
correlated with the phase difference values.

Conclusions: Our results suggested that the dCA was compromised in patients with GAD and negatively correlated
with the score of anxiety. Improving the dCA may be a potential therapeutic method for treating the neurological
symptoms of GAD patients.
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Background
Generalized anxiety disorder (GAD) is one of the most
common mental disorders in the world [1, 2] and can
negatively affect the life quality of patients and disrupt
important activities of daily living [1]. Patients with
GAD usually present with various neurological symp-
toms, such as dizziness, headache, and sleep disorders;

the mechanisms of these symptoms, however, remain
unclear. It has been reported that in patients with GAD,
the cerebral hemodynamics show abnormal manifesta-
tions [3, 4], which may be a reason for the neurological
symptoms of GAD.
Cerebral autoregulation, which protects the brain

tissue from hyperperfusion or hypoperfusion, is critical
in regulating cerebral hemodynamics and has been
found to play an important role in many neurological
diseases [5–7]. Previous studies found that the factors
involved in cerebral autoregulation regulation, such as
neuroregulation, myogenic response, and endothelial
regulation, etc., are dysfunctional in patients with GAD
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(Fig. 1) [8–12]. Our previous study also showed that
patients with GAD cannot maintain normal cerebral
blood flow velocity from supine to standing [13]. These
data imply that cerebral autoregulation may be impaired
in GAD patients.
Cerebral autoregulation is divided into static cerebral

autoregulation and dynamic cerebral autoregulation
(dCA), and the dCA is more sensitive to pathological
situations [14, 15]. When dCA is measured, continuous
cerebral blood flow velocities (assessed using transcra-
nial Doppler) and continuous finger blood pressure
(assessed using a servo-controlled plethysmograph) were
recorded simultaneously. These data were then analyzed
using transfer function analysis, an approach used to
analyze dCA based on spontaneous fluctuations of blood
pressure and cerebral blood flow velocities at rest [16,
17]. In previous studies, dCA calculated by transfer
function analysis has been applied in healthy subjects
[18], cerebrovascular disease [5, 19], cognitive impair-
ment [6], etc. However, dCA has not been studied in
patients with GAD.
In this study, we hypothesize that dCA is compro-

mised in patients with GAD. If our hypothesis is valid,
dCA may serve as a potential therapeutic target to im-
prove the neurological symptoms in patients with GAD.

Methods
Participants
The prospective study design was approved by the ethics
committee of the First Hospital of Jilin University under
the guidelines of the Helsinki Declaration of 1975/1983.
Written informed consent was obtained from all subjects.

Patients whose chief complaint was poor sleep were
selected for screening. Patients (aged ≥18 years) who met
the Diagnostic and Statistical Manual of Mental Disor-
ders, Fourth Edition, Text Revision criteria for GAD [20]
were recruited from May 2016 to November 2016 in the
outpatient unit of the Neurological Department. Patients
who met Diagnostic and Statistical Manual of Mental
Disorders criteria for Major Depressive Disorder were
excluded. Patients were otherwise healthy, with no ascer-
tained disorders in the nervous, cardiovascular, or respira-
tory systems and without hypertension, diabetes, or
hyperlipidemia. The clinical workup consisted of labora-
tory tests (liver and kidney function tests, hematology pro-
file, blood glucose tests, and blood lipid tests), blood
pressure, electrocardiography, transcranial Doppler (EMS-
9 PB, Delica, China), carotid ultrasound (IU22, Phillips,
Andover, MA, USA), cranial computed tomography/mag-
netic resonance imaging, and physical examination.
Patients were evaluated with the Hamilton Rating Scale
for Anxiety (HAMA) [21] and the 17-item Hamilton
Depression Rating Scale (HAMD) [22]. Medically and
psychiatrically healthy volunteers were recruited as
controls. Two blinded clinical psychiatrists evaluated the
patients’ mental health status.

Dynamic cerebral autoregulation (dCA) protocol
The examination of dCA was performed as reported in
previous research [5, 7, 23]. Subjects were asked to avoid
nicotine, caffeine, alcohol, and all kinds of sleep medi-
cines for at least 24 h before the dCA examination.
The examination was performed in a quiet, dedicated
research room with minimal surrounding stimuli. First,

Fig. 1 Hypothesis between generalized anxiety disorder (GAD) and cerebral autoregulation impairment. In patients with GAD, neuroregulation,
myogenic response, and endothelial regulation may be dysfunctional, which could damage cerebral autoregulation
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the baseline arterial blood pressure was measured at the
brachial artery using an automatic blood pressure moni-
tor (Omron 711). Second, we simultaneously recorded
continuous spontaneous arterial blood pressure on the
middle finger using a servo-controlled plethysmograph
(Finometer Pro, Netherlands) and continuous bilateral
middle cerebral artery blood flow velocity at a depth of
45 mm to 60 mm with 2 MHz probes attached to a
customized head frame (MultiDop X2, DWL, Sipplingen,
Germany). End-tidal carbon dioxide was recorded using
a capnograph with a facemask attached to the nasal
cannula. Data were recorded for 10 min for further dCA
examination analysis.

Data analysis
The dCA analysis was performed as previously reported
[5, 7] and was analyzed blindly for each subject. Briefly,
dCA data were analyzed using MATLAB (MathWorks,
Natick, MA, USA). Beat-to-beat alignment of the data
was achieved with a cross-correlation function to elimin-
ate possible time lags. The relationship between dynamic
changes in spontaneous arterial blood pressure and
bilateral middle cerebral artery blood flow velocity was
assessed with a transfer function analysis. For each
recording, arterial blood pressure and bilateral cerebral
artery blood flow velocity were divided into a number of
data segments by a 60-s window with a 30-s overlap. For
one segment of arterial blood pressure and bilateral
cerebral artery blood flow velocity, the transfer function
analysis was implemented as,

H fð Þ ¼ Spv fð Þ
Spp fð Þ ; ð1Þ

where H(f ) denotes the frequency response. Spp(f ) is the
auto-spectrum of arterial blood pressure, and Spv(f ) is
the cross-spectrum between arterial blood pressure and
cerebral artery blood flow velocity. For each subject,
Spp(f ) and Spv(f ) were averaged over the segments to
improve statistical reliability. The gain |H(f )| and phase
difference ϕ(f ) can then be computed as,

H fð Þj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

HR fð Þj j2 þ HI fð Þj j2� �

q

; ð2Þ

∅ fð Þ ¼ tan−1
HI fð Þ
HR fð Þ

� �

; ð3Þ

where HR(f ) and HI(f ) are the real and imaginary parts
of H(f ), respectively. Low phase difference and high gain
values at a low frequency band (0.06-0.12 Hz) indicate
that cerebral artery blood flow velocity follows changes
of arterial blood pressure passively, thus suggesting
impairment of autoregulation [16, 17]. We also calcu-
lated coherence function to quantify the linearity in the
frequency domain using a routine provided by Signal

Processing Toolbox in MATLAB with the Welch method
for the estimation of power spectral density and hamming
window for the reduction of spectral leakage. The record-
ings with averaged coherence < 0.4 at the low frequency
band were considered with insufficient linearity and there-
fore excluded from the transfer function analysis.

Statistical analysis
The Statistical Package for the Social Sciences Version 17.0
(SPSS, IBM, West Grove, PA, USA) was used to analyze
the data. Continuous data are expressed as mean and
standard deviation. Comparison between two groups were
analyzed using Student’s t-tests. The discrete variables are
expressed as the rate (percentage) and were analyzed using
chi-squared and Fisher’s exact tests. The Spearman correl-
ation analysis was used to analyze the relationship between
phase difference values and HAMA scores and the relation-
ship between phase difference values and HAMD scores.
Multiple linear regression analysis was used to explore the
effects of covariates on phase or gain. Calculated two-tailed
P values < 0.05 were considered statistically significant.

Results
Demographic information
In total, 57 patients with GAD (45.05 ± 14.83; 18 males)
and 40 healthy volunteers were enrolled in the study.
The baseline characteristics are presented in Table 1.

Table 1 Baseline characteristics, phase difference, and gain in
the patients and controls

GAD
(n = 57)

Control
(n = 40)

t /χ2 p

Male, n (%) 18 (31.58%) 24 (60.00%) 6.773 0.009

Age (years) 45.05 ± 14.83 43.10 ± 11.51 0.698 0.487

HAMA 19.79 ± 5.93 3.60 ± 1.71 19.501 < 0.001

HAMD 13.96 ± 4.08 4.37 ± 1.33 16.534 < 0.001

Mean ABP, mmHg 89.12 ± 7.48 86.60 ± 9.73 1.443 0.152

Heart rate 76.07 ± 8.99 74.10 ± 8.20 1.101 0.274

End-title CO2, mmHg 35.23 ± 3.12 35.16 ± 2.56 0.613 0.542

Phase difference, degree

Left hemisphere 43.43 ± 14.39 55.00 ± 8.86 −4.891 < 0.001

Right hemisphere 43.30 ± 15.40 54.07 ± 9.36 − 4.273 < 0.001

Gain, %/%

Left hemisphere 0.89 ± 0.31 0.85 ± 0.24 0.820 0.414

Right hemisphere 0.86 ± 0.29 0.86 ± 0.22 −0.064 0.949

Smoking, n (%) 12 (21.1) 7 (17.5) 0.188 0.664

Drinking, n (%) 4 (7.0) 1 (2.5) 0.646 0.310

GAD generalized anxiety disorder, ABP arterial blood pressure, HAMA Hamilton
Rating Scale for Anxiety, HAMD Hamilton Depression Rating Scale
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Dynamic cerebral autoregulation
GAD patients
The patients with GAD showed no difference in phase
difference values between the left and right hemispheres.
However, when compared with the healthy controls, the
phase difference values of both hemispheres of GAD pa-
tients were significantly lower than the corresponding
hemisphere of the healthy controls. In addition, there
was no significant difference in the gain values between
GAD patients and healthy controls in both the left and
right hemispheres (Fig. 2, and Table 1).

Correlation analysis
In the Spearman correlation analysis, both the left
and right phase difference values were negatively
correlated to HAMA scores (left: r = − 0.365, p < 0.001;
right: r = − 0.348, p < 0.001). Similarly, both the left and
right phase difference values were negatively correlated to
HAMD scores (left: r = − 0.350, p < 0.001; right: r = − 0.363,
p < 0.001).

Multiple linear regression analysis
The associations between clinical factors and phase
difference are shown in Table 2. GAD and age are found

to be correlated with phase difference values. GAD is
negatively correlated to phase difference, whereas age is
positively correlated to phase difference after adjusting
for covariates (Table 2). No factors were detected associ-
ated with gain.

Discussion
In the present study, we found that the dCA of both
hemispheres in patients with GAD was significantly
lower as compared with the healthy controls. In
addition, the dCA function is negatively correlated with
the anxiety score. Impaired dCA may be a mechanism
underlying the neurological symptoms of GAD and thus
may serve as a potential therapeutic target to alleviate
the neurological symptoms in patients with GAD.
Generally, phase difference between arterial blood

pressure and cerebral artery blood flow velocity at a certain
frequency can be considered as time delay between these
recordings. Therefore, lower phase difference (shorter time
delay) indicates that blood flow changes in pace (passively)
with fluctuations of blood pressure, suggesting that the
distal arterioles and capillary do not respond to the changes
of blood pressure. In contrast, notable phase difference
(larger time delay) suggests that the phase of arterial blood

Fig. 2 a The phase difference and gain derived from the transfer function within significant interval 0.06-0.12 Hz are plotted. (−: left middle
cerebral artery [MCA] and —: right MCA). Phase difference values (parameter of dynamic cerebral autoregulation) were significant compromised
in patients with generalized anxiety disorder (GAD) compared with the healthy group, indicating an impairment of dynamic cerebral autoregulation in
patients with GAD. There was no difference of the gain values between GAD group and healthy group. b Statistical analysis of phase differences and
gains are shown. Phase difference values in the GAD group were significantly lower than the corresponding MCA of the healthy group. There was no
difference in gain values in the two groups
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pressure is outpaced by the phase of cerebral artery blood
flow velocity, implying that the distal arterioles and capillary
do not comply with the changes in blood pressure. The rea-
son why patients with GAD present with impaired dCA re-
mains unclear and needs further investigation. As a chronic
stress disease, lower cardiac vagal control and hyperactivity
of the sympathetic and hypothalamic-pituitary-adrenal axis
were reported in patients with GAD [24–29], leading to
disorganized secretion of norepinephrine, serotonin, cortisol,
etc. Some of these neuroendocrine substances are vasoactive
substances that regulate cerebral autoregulation (Fig. 1).
The integrity of structure and function of the endothe-

lium is essential to maintain a functional cerebral auto-
regulation [30–33]. However, in patients with GAD,
both the structure and function of the endothelium may
be damaged due to oxidative stress, which is another
characteristic of GAD [34–36]. In addition, CRP [37],
TNF-α, and IL-17 [38, 39] are increased in patients with
GAD, indicating that the inflammatory process is acti-
vated and can induce endothelial cell dysfunction.
Furthermore, oxidative stress can alter the vascular
smooth muscle tone, another indispensable mechanism in
regulating cerebral autoregulation, by changing reactive
oxide species concentration (Fig. 1) [40].
As described above, the changes in neuroregulation,

endothelial regulation, and myogenic response may
collectively result in the impairment of dCA, leading to
unstable cerebral blood flow in patients with GAD. A
previous study by Kalk, et al. supports our findings [3].
They found that patients with untreated GAD showed

increased perfusion in the left Broca’s area and left
occipitotemporal region, and venlafaxine-treated GAD
patients showed increased cerebellar perfusion bilaterally
[3]. In the present study, the impairment of dCA can
result in abnormal cerebral perfusion. Our previous
study also yielded some meaningful results: we found
that patients with anxiety showed more pronounced
decreases in cerebral blood flow velocity with abrupt
standing, which indicates impaired dCA [4].
It is worth mentioning that phase difference values

were negatively correlated with the HAMA scores,
which suggests that as the HAMA scores increase, the
phase difference values, i.e., dCA, tend to decrease. In
addition, the negative correlation between phase differ-
ence values and HAMD scale suggests a potential
impact of depressive symptoms on phase difference
values. This phenomenon deserves further study in
patients with major depressive disorder. The impairment
of dCA in patients with GAD indicates that cerebral
vascular function is a therapeutic target of GAD. Thus,
methods to improve dCA may potentially relieve the
neurological symptoms in patients with GAD.
Both the studies from Ortega-Gutierrez and Yams sug-

gested that dCA remains intact in the elderly, though their
intracranial arteries may be affected by atherosclerosis [41,
42]. In our study, we found age is a weak positive correl-
ation to phase difference; the causes are not clear. One
possible reason is that the patients we included were rela-
tively young, and the age span is relatively small. However,
this explanation is inadequate.

Table 2 Multiple regression Coefficients for mean phase difference values of left and right hemisphere

Covariates Unstandardized coefficients Standardized
coefficients

95% CI for β P

β Std. Error Lower Bound Upper Bound

Constant 63.819 21.494 21.105 106.534 0.004

Age (years) 0.240 0.092 0.248 0.057 0.422 0.011

Mean ABP, mmHg −0.063 0.150 −0.041 −0.362 0.236 0.676

Heart rate −0.075 0.143 −0.050 −0.360 0.210 0.604

End-title CO2, mmHg −0.229 0.389 −0.057 −1.003 0.544 0.557

Groups of mental disorder

Control Reference

Generalized anxiety disorder −11.052 2.629 −0.418 − 16.277 − 5.840 < 0.001

Gender

Female Reference

Male −0.143 3.024 0.005 −6.154 5.828 0.962

Smoking

No Reference

Yes −2.561 3.672 −0.078 −9.858 4.737 0.487

Drinking

No Reference

Yes −2.943 5.854 −0.050 −14.576 8.690 0.616
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This study has some limitations. The first is the gender
mismatch of the GAD group and controls. Because gender
affect cerebral blood flow via complex mechanisms [43], we
could not rule out the possible influence of sex on dCA.
However, it is worth mentioning that the regression
analyses suggest no effect of gender in our study. Second,
we do not have the neuroendocrine results of our patients’
blood to further support our results. Third, this is an
observational study without in-depth mechanism research.
Furthermore, large sample sizes and animal studies are
needed. In addition, medication condition was not included
in this article, which could potentially influence the results.

Conclusions
Our results suggested that the dCA was compromised in
patients with GAD and negatively correlated with the
score of anxiety. Improving the dCA may be a potential
therapeutic method for treating the neurological symptoms
of GAD patients.
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